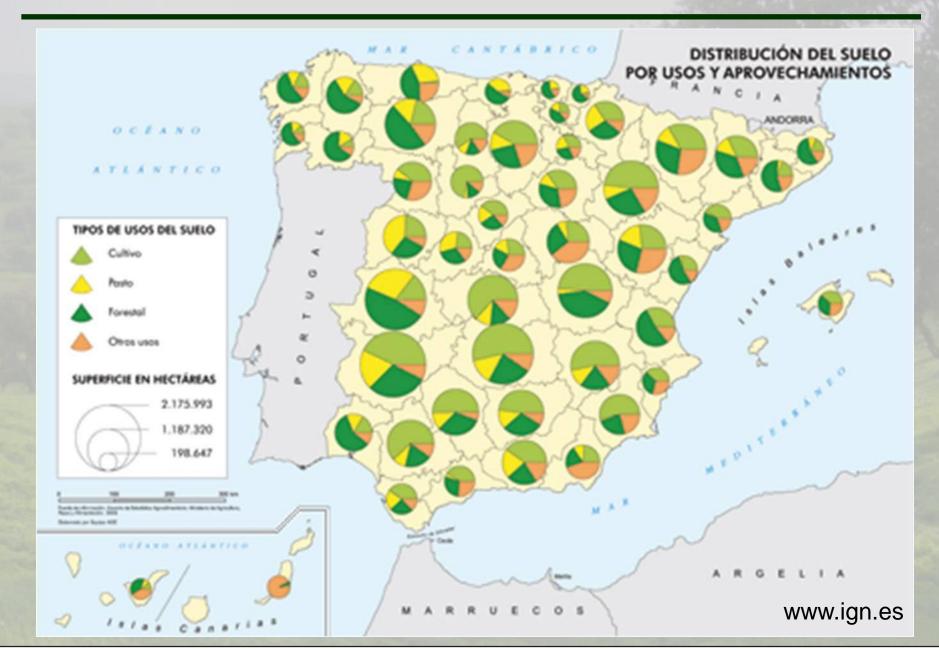


Uso y Conservación de Pastos Metodologías para su Estudio y Gestión

Madrid 11-12 de diciembre de 2017

Estudios de producción y calidad en pastos de dehesa, pastizales, cultivos forrajeros y pastos de montanera en el 5.0. de la Península Ibérica

SARA RODRIGO Y ÓSCAR SANTAMARÍA ESCUELA DE INGENIERÍAS AGRARIAS UNIVERSIDAD DE EXTREMADURA


ÍNDICE

- 1. NOMENCLATOR
- 2. ESTADÍSTICAS
- 3. DEHESA
- 4. ESTUDIOS DE PRODUCCIÓN
- 5. CALIDAD DEL PASTO Y SU MEDIDA
- 6. ESTUDIOS DE CALIDAD
- 7. PRODUCCIONES DE PASTOS LEÑOSOS
- 8. AFORO DE MONTANERAS

1. NOMENCLATOR

- Tipos de pastos: pastos con arbolado denso, pastos con arbolado ralo, pasto de dehesa, pasto arbustivo, pasto herbáceo (pasto de origen agrícola, pastizal, prado y pasto de puerto)
- <u>Pastizal</u>: pasto herbáceo natural dominado, en general, por especies bastas y que, por efecto del clima, se seca o agosta en verano.
- Pasto de dehesa: superficie con árboles más o menos dispersos (Quercus) y un estrato herbáceo bien desarrollado, habiendo sido eliminado, en gran parte, el estrato arbustivo.

2. ESTADÍSTICAS

2. ESTADÍSTICAS

Extremadura: total de superficie 4.172.082 ha

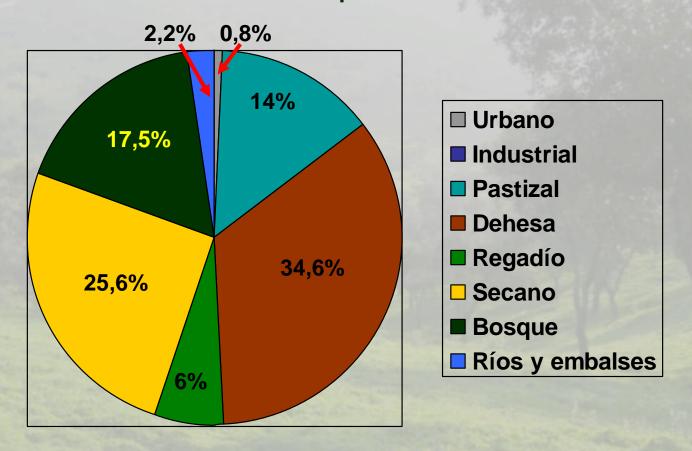
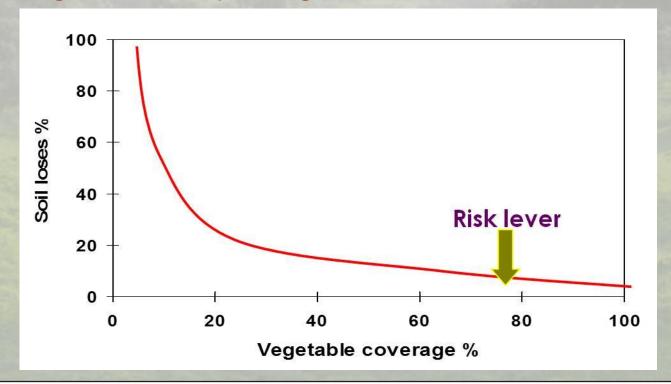


Figura. Distribución de los usos del suelo en Extremadura


3. DEHESA. Descripción

 Dehesa: sistema agrosilvopastoral donde conviven el estrato herbáceo, arbustivo y arbóreo en condiciones semiáridas mediterráneas, con animales domésticos y salvajes, criados en régimen extensivo, y respetando el medio ambiente de una manera sostenible

 "Example of an ecosystem agriculturally stable and environmentally well managed" (Van Wiener, 1995).

- Conocimiento y aprovechamiento multidisciplinar (árboles, arbustos, hierbas, producción animal, manejo,...)
- Manejo complejo por la biodiversidad
- Reutilización de recursos y Sostenibilidad
- *Suelos (ácidos, poco profundos, pobres...)
- *Clima extremo con temperaturas invernales frías (2-5 °C) y estivales muy cálidas (>30 °C). Sequía estival de 4-5 meses y pluviometría anual media entre 400 y 600 mm

- Riesgos: SOLUCIÓN = MANEJO
 - Abandono → menos inputs y autoabastecimiento
 - Erosión Hídrica → Mejora en la cobertura herbácea
 - Erosión Eólica → Reforestación
 - Fuego → Manejo de ganado

Producciones

- Quesos
- Miel y polen
- Ocio
- Corcho
- Leña y carbón
- Caza y pesca
- Setas

Producciones

Carnes de calidad

(producción secundaria)

BIOMASA

(producción primaria)

- ¿Cómo se mide la producción?
 - Métodos de toma de muestras (sampling): dependerá de la irregularidad del terreno
 - 1.- TRANSECTOS o inventarios

(cambios en la vegetación a lo largo de un gradiente)

2.- Porcentaje de FRECUENCIA de una especie

(Percentage frequency – Methods of surveying and mesuring vegetation)

Frecuencia: fi = n / N

Porcentaje de frecuencia: pi = fi × 100

3.- Superficie cubierta (covered area)

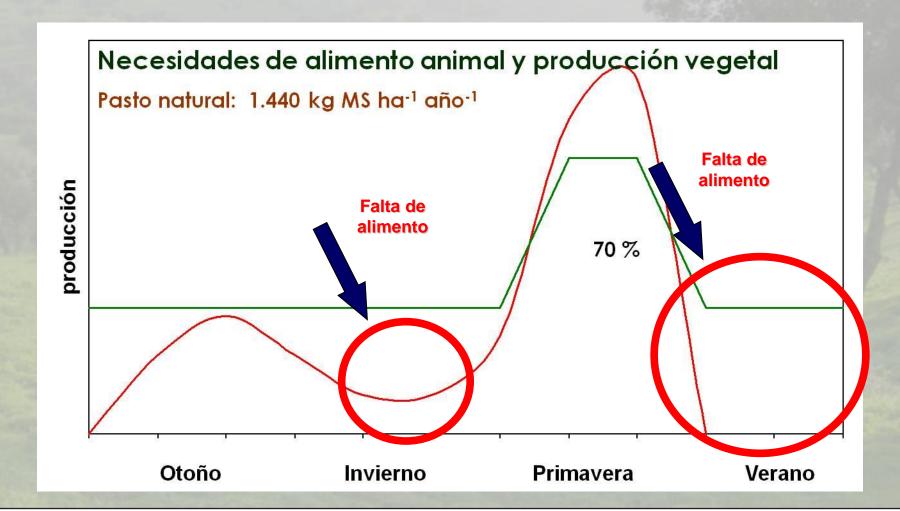
¿qué fracción de la planta debe considerarse como representante del conjunto de la misma?

¿Y si tiene rizomas?

Gramíneas / Leguminosas / Otras

4.- Método de Levy ó de los cuadrados aleatorios

Variante 1: asignar valores a cada una de las especies (de 0 a 10) para una valoración cuantitativa ponderada atendiendo a su calidad


Variante 2: método del peso producido por cada una de las especies presentes

5.- Método de la aguja

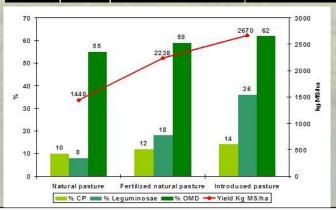
Lanzar la aguja al azar y con ángulo determinado

Es menos real que el anterior y no podemos dar los datos referidos a superficie como en aquel.

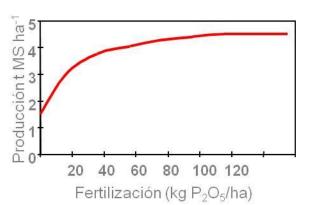
 Distribución anual de la producción de biomasa Estacionalidad

- Tipos de BIOMASA para alimentación animal
 - 1. Herbácea
 - 2. Arbórea
 - 3. Arbustiva

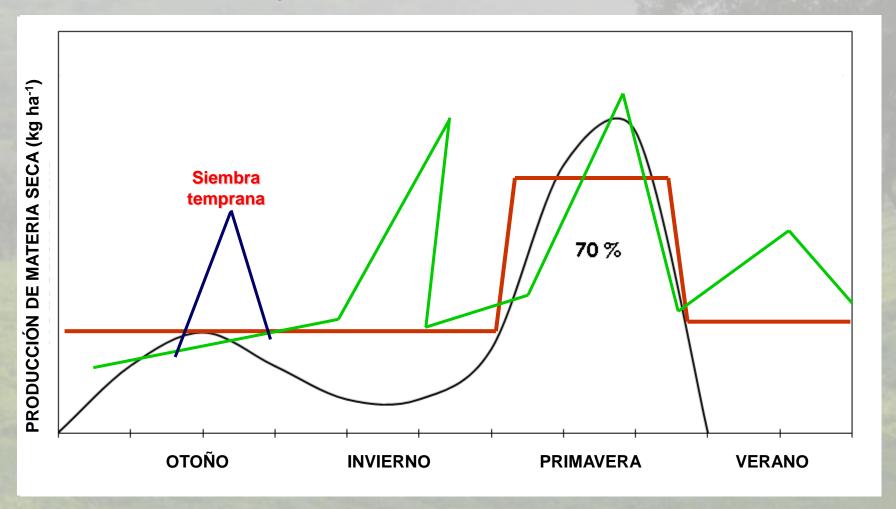
MEJORA



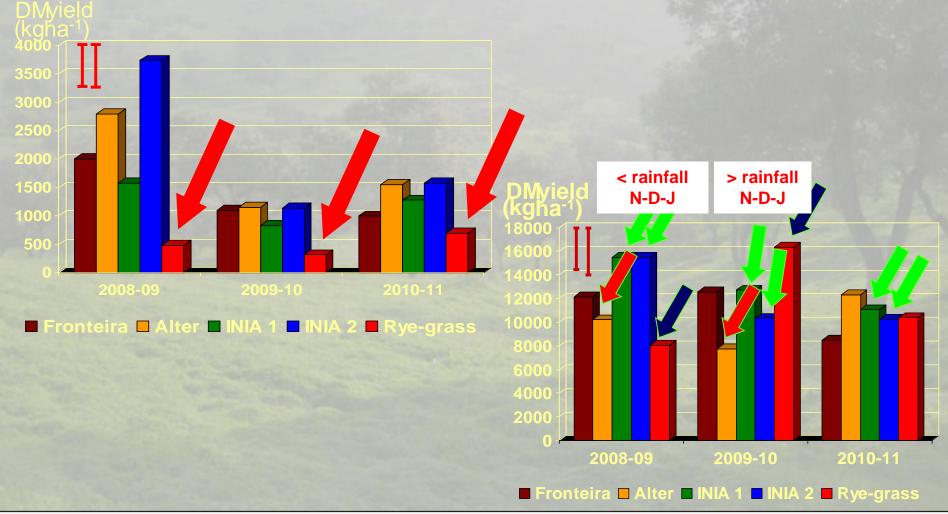
mejorantes y cultivos forrajeros Leguminosas Fertilización Ganado: con fósforo objetivo y Calidad herramienta Producción Cobertura

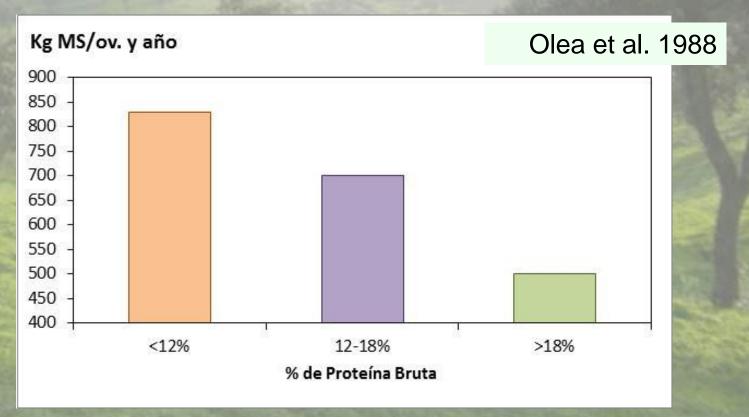

Introducción de sps.

Producción con mejora por fertilización con P


		MS (kg/ha)		Gramínea (%)	ıs	Leguminos (%)	as	Otras hierl (%)	bas	Cobertui (%)	ra .
Corte	1			21.8 ± 2.8	В	73.5 ± 3.1	A	4.7 ± 0.9	В	$98,1 \pm 0,8$	NS
	2			$47,2 \pm 4,2$	A	0.7 ± 0.3	В	$52,1 \pm 4,3$	A	$99,0 \pm 0,5$	
	В	2098 ± 258	d	$21,9 \pm 7,8$		$28,1 \pm 11,2$	b	$50,0 \pm 18,2$	a	$95,0 \pm 2,7$	b
	K1	3582 ± 286	c	$31,3 \pm 10,6$		$41,3 \pm 16,9$	a	$27,5 \pm 11,7$	b	$100,0 \pm 0,0$	a
nto	K2	5274 ± 487	a	$35,6 \pm 10,3$		$38,1 \pm 15,8$	ab	$26,3 \pm 9,0$	b	$98,8 \pm 1,3$	a
Tratamiento	M1	5077 ± 333	a	$35,0 \pm 12,5$	NS	$44,4 \pm 17,5$	a	$20,6 \pm 11,2$	b	$100,0 \pm 0,0$	a
atar	M2	3877 ± 288	bc	$35,6 \pm 7,2$	140	$38,8 \pm 15,8$	ab	$25,6 \pm 10,5$	b	$98,8 \pm 0,9$	a
Tra	S	3831 ± 276	bc	$43,1 \pm 8,9$		$33,8 \pm 13,9$	ab	$23,1 \pm 9,4$	b	$100,0 \pm 0,0$	a
	T1	4476 ± 762	abc	$35,0 \pm 11,0$		$42,5 \pm 17,2$	a	$22,5 \pm 10,7$	b	$100,0 \pm 0,0$	a
	T2	4759 ± 315	ab	$35,0 \pm 9,2$		$38,8 \pm 15,8$	ab	$26,3 \pm 10,3$	b	$100,0 \pm 0,0$	a

 Producción con mejora por introducción de cultivos forrajeros


 Producción con mejora por introducción de cultivos forrajeros



- Varias especies (triticale, avena, raigrás, veza)
- Varios cortes (invierno+primavera, primavera)

 Producción con mejora por introducción de cultivos forrajeros. MS invierno

- No sólo la cantidad de pasto (en kg MS) es importante de cara a la alimentación animal.
- Su calidad nutritiva también marcará la carga ganadera. Como ejemplo:

- Y en muchas tablas de necesidades alimenticias están presentes parámetros de calidad nutritiva.
- Sirvan a modo de ejemplo estas de Daza (1999):

Necesidades para vacuno en extensivo.

Peso vivo	Estado fisiológico	Necesidades de	Necesidades de
(kg)		energía (UFl/día)	proteína (gMND/d)
525	Mantenimiento	4,8	262
	Gestación	6,5	297
	(3 últimos meses)		
	Lactación	8,1	605

5-10 %.

verdes: 80%.

Forrajes

Parámetros de calidad del pasto. Composición:

Extracto Etéreo Materia Hemicelulosa orgánica **Estructurales** Grasa bruta. MS - cenizas **Materia Seca** Fibras brutas. En pastos < 5%. Celulosa Fibras detergentes **Extractores Soxhlet** Secado en estufa Lignina hasta pesada Cenizas No constante. estructurales **Sustancias** En horno mufla a pécticas Por diferencia con 550°C. **Carbohidratos** los demás Contenido mineral. FB: doble componentes hidrólisis ácida Espectrofotometría y alcalina. de absorción **Proteínas** Agua atómica o Fibras colorimetría. detergentes: Bruta o digestible. Concentrados: ✓ FND (PB=MNT; PD=MND)

PB = contenido en

nitrógeno x 6,25.

Método Kieldahl.

✓ FAD

✓ LAD

- Pero sólo una parte del alimento ingerido es realmente asimilado por el organismo.
- El resto se elimina por distintos procesos y, por tanto, no resulta realmente útil.
- De aquí surge el concepto de digestibilidad = capacidad de un determinado principio inmediato de ser realmente asimilado por un animal.
- Puede medirse "in vitro", o "in vivo".
- Para in vivo, se utilizan animales fistulados y/o provistos de bolsas para la recogida de heces.

- Para in vitro, por procedimientos químicos se imita en laboratorio el proceso de digestión, generalmente por el sistema de Van Soest.
- Luego se aplican diferentes fórmulas:

```
DMO = (100 – FND (%) – Cen (%)) + [(139,5 – 69,0 log (100 LAD (%)/ FAD (%))] FND (%) / 100
```

Los alimentos aportan energía a los animales. Tipos:

 Cada escuela o sistema prefiere utilizar una u otra forma de energía. Así, el INRA -sistema muy difundido en España - utiliza la energía neta (EN).

- La energía se mide en calorías o julios.
- Depende de la composición química del alimento:

EB (kJ/kg MS) = 23.5xPB + 39.5xEE + 17.5xHdC (g/kg MS)

- También la energía se puede indicar comparándola con la de otros alimentos de referencia.
- Lo más utilizado en España es la Unidad Forrajera (UF), ≈ energía neta suministrada por 1 kg de grano de cebada de calidad media.
- 1 UFI = 7,1 MJ (megajulios), o 1MJ = a 0,14 Ufl.

- Muchas tablas publicadas indican las UF de diferentes tipos de pasto: verdes, conservados, concentrados (Lignón, 1981, De Blas, 1983; Daza, 1999; Calsamiglia et al., 2016 – Tablas FEDNA).
- También las UF contenidas en 1 kg de un alimento pueden calcularse por medio de la fórmula:

UF/kg = 1/0,75 [(1,43 x kg de PD/kg)+(kg de HdC Digestibles/kg)+(a x kg grasa digestible/kg)] C

- C = 1 (Fibra Bruta, en % sobre MS)/100
- a = 1,91 si tipo forraje; 2,12 si grano de cereales y subproductos y 2,41 si tortas de semillas oleaginosas.

Índices de calidad del pasto.

Valor relativo del pasto (VRP)

- VRP para rumiantes depende de la "ingestibilidad" de la MS (IMS) y "digestibilidad" de la MS (DMS),
- Estos 2 parámetros a su vez dependen de la FND y FAD, respectivamente:

$$VRP = (IMS \times DMS)/1,29$$

- > IMS (%) = 120/FND (% sobre MS)
- \rightarrow DMS (%) = 88,9 [0,779 x FAD (% sobre MS)]

Índices de calidad del pasto.

Valor relativo del pasto (VRP)

La clasificación del pasto en función del VRP es:

Excelente	si VRP > 151
1ª Categoría	si 125 < VRP < 151
2ª Categoría = (IMS x I	si 103 < VRP < 124
3ª Categoría	si 87 < VRP < 102
4ª Categoría	si 75 < VRP < 86
5 ^a Categoría	si VRP < 75

Índices de calidad del pasto.

Valor Pastoral del pasto (VP)

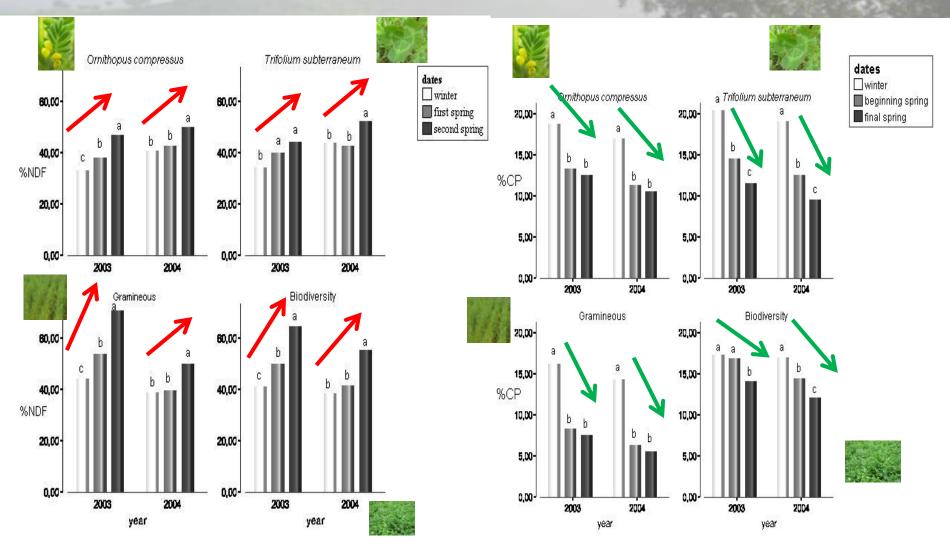
- Método que analiza la calidad del pasto desde un punto de su composición botánica. Método especialmente útil para pastos naturales.
- Se basa en asignar a cada especie pratense un índice de calidad o específico (Is) que refleje su interés agronómico y zootécnico.

Indic	e <mark>ls</mark> de ca	Interpretación
Valor	Pastor	Especie muy mala, tóxica, perjudicial, rechazada
	1	Especie mala, mediocre
State of the last		Especie regular
		Especie buena
	4	Especie muy buena
No. of London	5	Especie excelente

- Según Daget y Poissonet, el Is varía entre 0 y 5.
- Combinando el Is de cada especie del pasto con la cobertura del suelo por cada una de ellas, se obtiene el VP.

Apetecibilidad y Palatabilidad.

- Apetecibilidad de un pasto implica que el animal reciba sensaciones agradables (gustativas, olfativas y táctiles) al comerla.
- La palatabilidad incorpora a la apetecibilidad efectos post-ingestivos aprendidos por el animal mediante relaciones causa-efecto.
- Un pasto apetecible puede resultar poco palatable si el animal sabe que le va a producir molestias o trastornos digestivos, intoxicación, etc.


6. Estudios realizados por nuestro grupo

Influencia de la edad en la calidad.

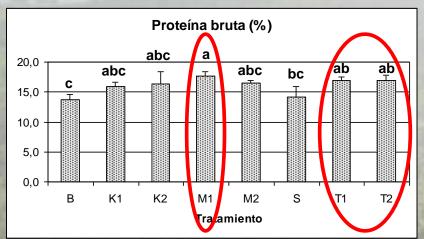
- Estudio en 2 años agrícolas: 2002/03 y 2003/04:
- En 6 dehesas representativas.
- Siega en tres momentos del ciclo: invierno, principios de primavera y finales de primavera.
- Variables respuestas: PB, FND y FAD.

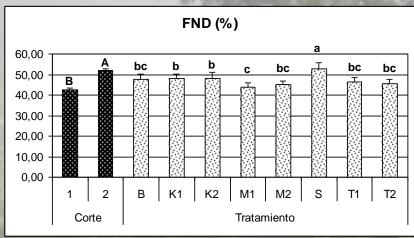
6. Estudios realizados por nuestro grupo

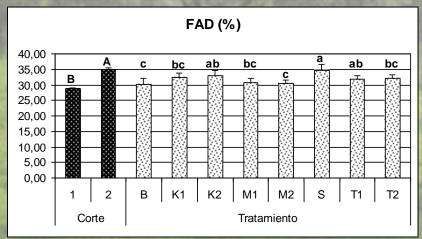
Influencia de la edad en la calidad.

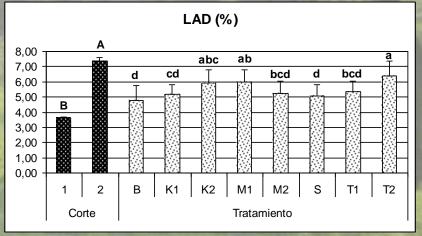
6. Estudios realizados por nuestro grupo

Influencia de la fertilización en la calidad.

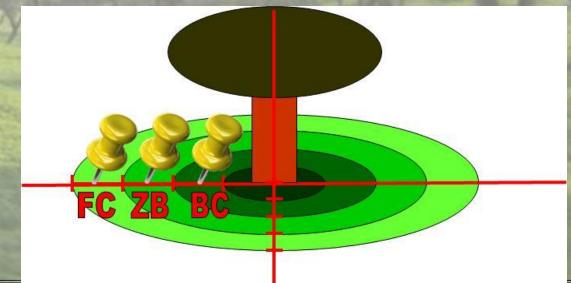

- Estudio en 4 años agrícolas: 2006 al 2010:
- En 1 dehesa de Badajoz.
- En pradera y pasto natural.
- Ocho tratamientos fertilizantes: P, K, Mg
- Variables respuestas: PB, FND, FAD y LAD.


Tratamiento	Tratamiento			
S: 250 Kg/ha superfosfato de cal 18% T1: 175 Kg/ha Thomaskali T2: 300 Kg/ha Thomaskali M1: 150 Kg/ha Kainita + 100 Kg/ha Thomaskali	M2: 200 Kg/ha Kainita + 100 Kg/ha Thomaskali K1: 80 Kg/ha Kieserita + 100 Kg/ha Thomaskali K2: 125 Kg/ha Kieserita + 100 Kg/ha Thomaskali B: Testigo sin fertilizar			


Thomaskali: 12% CaO, 12% P₂O₅, 18% K₂O, 4% MgO, 3% S (K+S KALI GMBH, Kassel, Alemania); **Kainita**: 20% Na, 11% K₂O, 5% MgO, 4% S (K+S KALI GMBH, Kassel, Alemania); **Kieserita**: 50% SO₃, 25% MgO (K+S KALI GMBH, Kassel, Alemania); **Superfosfato**: 29% CaO, 27% SO₃, 18% P₂O₅ (Integral Española S.A., Madrid, España)

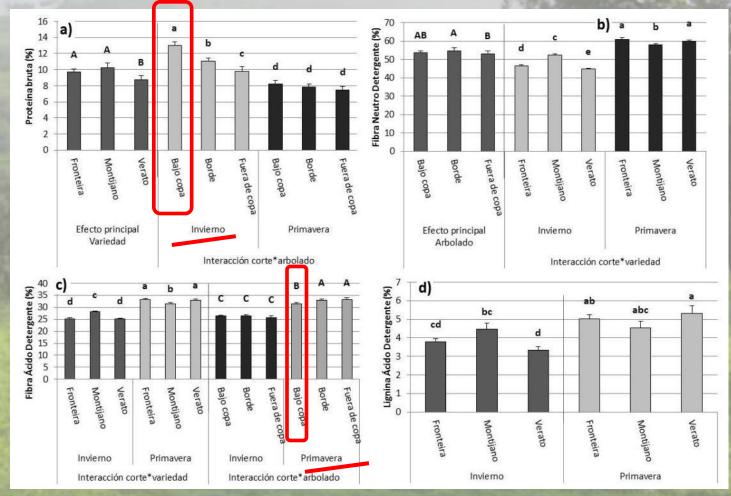

6. Estudios realizados por nuestro grupo

Influencia de la fertilización en la calidad.



M1: P (12 UF) y K (11 UF); T: P (20-36 UF)

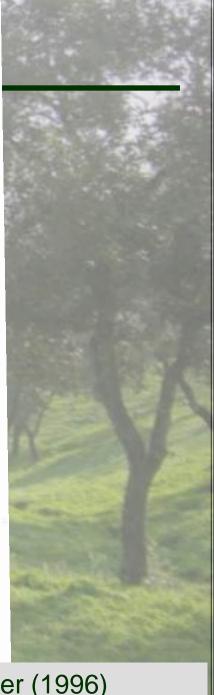
6. Estudios realizados por nuestro grupo


Influencia del arbolado en la calidad.

- Estudio en 2 años agrícolas: 2014 al 2016:
- En 1 dehesa de Badajoz.
- Con tres cultivares de triticale.
- 3 distancias: Bajo copa, borde y fuera de copa.
- Variables respuestas: PB, FND, FAD y LAD.

6. Estudios realizados por nuestro grupo

Influencia del arbolado en la calidad.


PB y FAD se vieron favorecidos por el árbol.

7. Producciones pastos leñosos

- Gran importancia → pueden suministrar alimento al ganado en épocas o en zonas con falta de pasto herbáceo.
- Suministran alimento mediante dos vías:
 - ✓ Biomasa (ramón).
 - ✓ Frutos: especialmente en árboles (Fagaceas)
- El valor nutritivo del ramón varía según ciertas variables (densidad, fenología, ganado, etc).
- Una aproximación a la calidad bromatológica la recoge Montoya-Oliver (1996).

TABLA II
CLASES DE PALATABILIDAD DE LA VEGETACION LEÑOSA

Especie	Clase	Especie	Clase
Adenocarpus grandiflorus	Γ	Olea europea	I
Arbutus unedo	II	Osmunda regalis	VI
Asparagus acutifolius	v	Osyris alba	II
Bryonia cretica	VI	Phyllirea angustifolia	II
Calycotome villosa	II	Phyllirea latifolia	II
Calluna vulgaris	Ш	Pistacia lentiscus	v
Ceratonia siliqua	П	Polygala microphylla	· I
Chamaerops humilis	V	Populus alba	II
Cistus albidus	v	Pteridium aquilinum	VI (excepto jabalies)
Cistus crispus	v	Pterospartum tridentatum	II
Cistus ladanifer	V	Quercus canariensis	III
Cistus monspeliensis	V.	Quercus coccifera	IV
Cistus populifolius	IV	Quercus fruticosa	III
Cistus salvifolius	IV	Quercus rotundifolia	III
Clematis flammula	II	Quercus pyrenaica	III
Crataegus monogyna	III	Quercus suber	III
Cytisus baeticus	I	Rhamnus alaternus	III
Cytisus villosus	II	Rhamnus lycioides	III
Daphne gnidium	VI	Rhododendron ponticum	VI
Daphne laureola	VI	Rosa sempervirens	II
Erica arborea	V	Rubia peregrina	II
Erica australis	V	Rubus ulmifolius	II
Erica ciliaris	IV	Ruscus aculeatus	IV
Erica scoparia	V	Salix alba	II
Erica umbellata	IV	Smilax aspera	I
Fraxinus angustifolia	I	Strauracanthus boivinii	II
Halimium ocymoides	III	Tamarix africana	III
Hedera helix	II (sólo corzo)	Teline linifolia	IV
Juniperus oxycedrus	III	Teline candicans	II
Lavandula stoechas	V	Teucrium fruticans	II
Lithospermum fruticosum	V	Thymelaea villosa	VI
Lonicera etrusca	I	Thymus villosus	V
Lonicera peryclimenum	I	Ulmus minor	II
Myrtus communis	II	Viburnum tinus	II
Nerium oleander	VI		

Montoya-Oliver (1996)

7. Producciones pastos leñosos

- En cuanto a los frutos, nos centramos en la bellota por su importancia.
- Pobre en proteínas y rica en hidratos de carbono fácilmente transformables en grasa.
- Valor energético: 0,5 U.F./kg.
- El ganado que mejor lo aprovecha: porcino, sobre todo de razas ibéricas (9 kg bellota ≡ 1 Kg de peso vivo de gran calidad).
- Consumo: 8-10 Kg x cada 100 Kg de peso vivo.
- Producción variable, media 500-(800) kg/ha año.
 300-400 Kg/ha año es aceptable.

- Cuantificar la producción de bellota (montanera)
 es muy importante para determinar nº de cerdos
 ibéricos "de bellota" que se pueden producir.
- La Norma de Calidad del Ibérico (RD 4/2014), establece la carga ganadera máxima admisible.

Superficie arbolada cubierta	Carga ganadera máxima admisible (Animales/Ha)	
Porcentaje		
Hasta 10	0,25	
Hasta 15	0,42	
Hasta 20	0,58	
Hasta 25	0,75	
Hasta 30	0,92	
Hasta 35	1,08	
Superior a 35	1,25	

- La norma establece que luego las entidades de inspección deberán obtener el aforo concreto de ese año para calcular la carga ganadera.
- En los protocolos de actuación para la inspección (Vs 08/05/2017) no se especifica método.
- Métodos de aforo. Revisión de Rodríguez-Estévez et al. (2008):
 - ✓ Métodos cualitativos o indirectos: se basan en parámetros climáticos o bioindicadores.
 - Métodos cuantitativos o directos: se basan en conteos directos de bellotas.

Métodos cualitativos o indirectos.

- Método de Vázquez et al. 2000
 - \checkmark Pr = Pp / [3-((1-Ea)+(1-Ep)+(1-Es))]
 - ✓ La producción potencial la calcula por métodos directos.
- Método Ley de la Dehesa de Extremadura (1986)
 - ✓ En un índice de potencialidad productiva, se da un factor K, que es el referido a la producción de bellota, que se calcula en base a un índice de zonalidad (por TM) y al área basimétrica.

Métodos cuantitativos o directos.

- Métodos visuales
 - ✓ Johnson 1994, adaptado de Sharp (1958): Con prismáticos, se cuentan las bellotas.
 - ✓ Espárrago et al. (1992), Pp=2,313*M*R*(H/R).
- Métodos de captura directa
 - ✓ Zulueta y Cañellas (1989): trampas de 50x50 cm, y clasificación previa de la producción.
 - ✓ Zulueta y Montoto (1992): similar, pero se miden bellotas y cascabullos.

8. Aforo de Montanera. Caso de estudio.

- Colaboración con UPM: Hernández Díaz-Ambrona.
- Con datos de producción de bellota de diferentes dehesas -> Métodos de captura directa.
- Desarrollaron modelos matemáticos en base a los principales factores que afectaban la producción:
 - ✓ Climáticos.
 - ✓ Edáficos.
 - ✓ De estructura de arbolado (nº pies, fcc).
- Es lo que denominaron Modelo Dehesa.

8. Aforo de Montanera. Caso de estudio.

