Biodiversidad en pastos de la alta montaña mediterránea en el Sistema Central. Perspectivas frente al cambio global.

Antecedentes

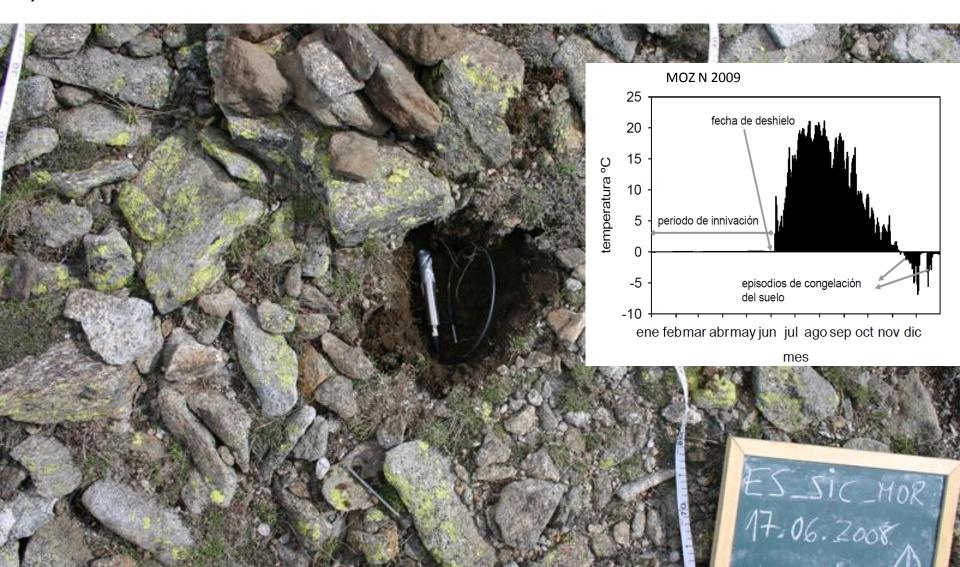
Ecosistemas de alta montaña vulnerables a los procesos de cambio global

- Fuertemente condicionados por las bajas temperaturas, que determinan periodos vegetativos cortos y tasas de renovación de los recursos largas.
- Ecosistemas con un alto aislamiento climático y geográfico, ricos en especies endémicas y especialistas de alta montaña (Körner 2003). En Europa albergan entre 1/3 1/2 de la diversidad vegetal (Theurillat 1995).
- Ecosistemas con escasa resilencia (Spiegelberger et al. 2006).

Antecedentes

Particularidades de los ecosistemas de alta montaña mediterránea

- El agua es un factor limitante adicional y su escasez puede acortar el periodo vegetativo.
- Predicciones en los patrones de precipitación prevén disminución de las precipitaciones (IPCC 2007), principalmente en primavera (del Río et al. 2011).

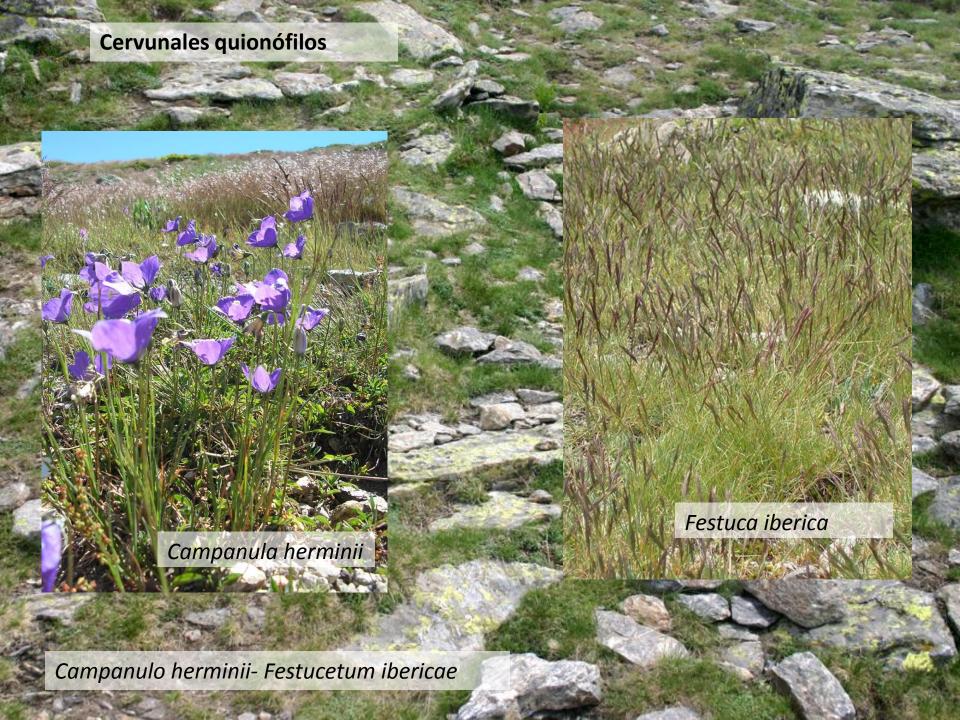


SEGUIMIENTO A LARGO PLAZO DE LA DIVERSIDAD VEGETAL EN EL SISTEMA CENTRAL

PROYECTO GLORIA Iniciativa para la Investigación y el Seguimiento Global de los Ambientes Alpinos (GLobal Observation Research Initiative in Alpine environments)

SEGUMIENTO DE LA TEMPERATURA DEL SUELO

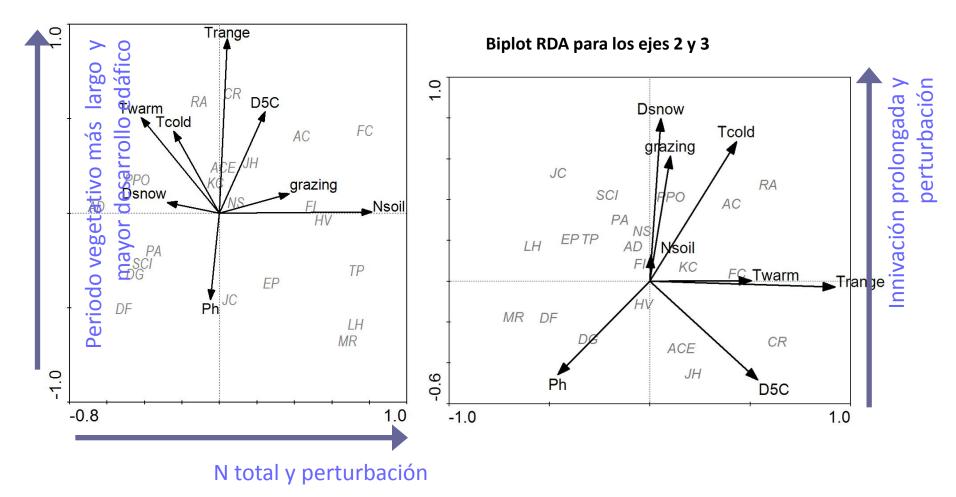
Red de termómetros en Sistema Central (42 dataloggers): Cumbres de Guadarrama, Gredos y Candelario. Inicio de las observaciones 2006.



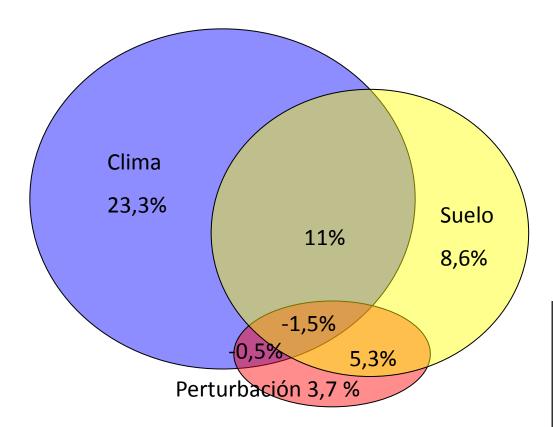


Julio Agosto

Área de estudio



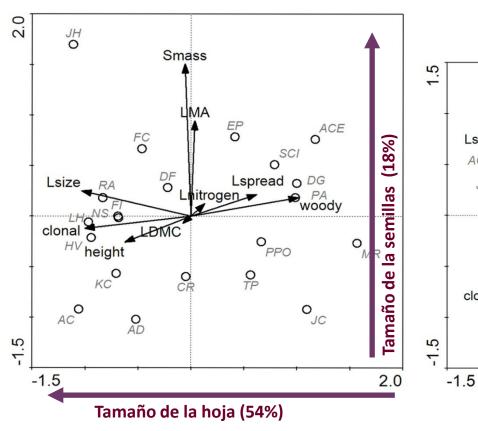
Perturbaciones y usos

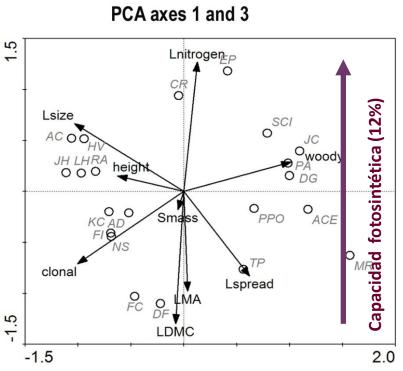


Variabilidad ambiental. Selección de las variables ambientales

Biplot RDA para los ejes 1 y 2

Partición de la varianza: separar los efectos de las variables explicativas



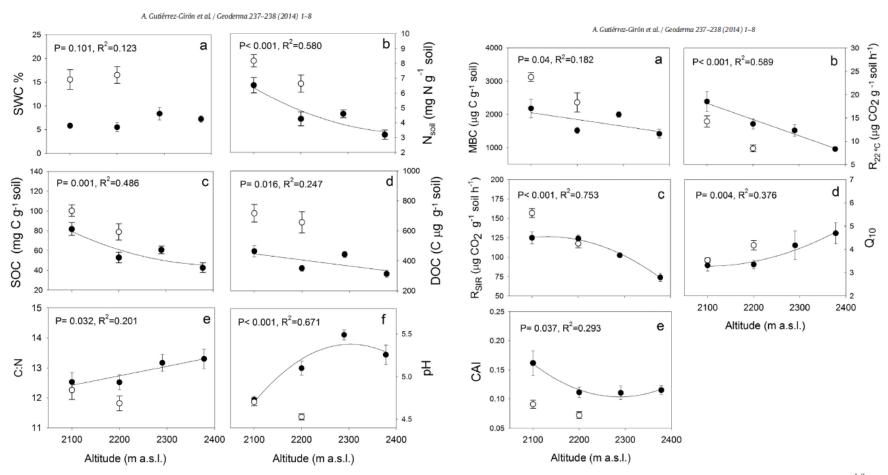

Variación total explicada 49.9%

- Las condiciones climáticas y edáficas explican la mayor parte de la variación de la composición florística. Sus efectos independientes y combinados son igualmente importantes.
- La perturbación por herbívoros tiene un efecto pequeño
- •Los variables ambientales analizadas son buenos predictores de la distribución de la especies.

Variabilidad funcional en los pastos psicroxerófilos del Sistema Central

A. Gutiérrez-Girón and R. Gavilán

Table 5. Summarised S_{rlq} statistical values of the fourth-corner analysis, relating environmental variables to plant traits. The S_{rlq} statistic measures the link between species traits and environmental conditions mediated through the species matrix (Dray and Legendre 2008). Significance of S_{rlq} values have been calculated by using the permutation test model 5 (Dray and Legendre 2008) (999 permutations).


	Environmental variables											
Traits	Twarm	Trange	D_{snow}		D_{5C}		N _{soil}		pН		grazing	
Height L _{spread}	0.142 *** -0.178 ***	0.121 *** -0.189 ***	-0.083 -0.067		0.219 -0.035	***	0.105 0.091	**	-0.11 0.136	**	0.105 -0.006	**
Woodiness LMA	-0.222 *** -0.06	-0.26 *** 0.05	0.043 -0.068		-0.196 0.035	***	0.027		0.079		-0.017 -0.017	
LDMC	-0.071 0.154 ***	-0.103 ** 0.11 ***	-0.061 0.053		0.001 0.015		0.036 -0.077		0.082 -0.074	**	0.007 0.001	
L _{nitrogen} L _{size}	0.112 **	0.256 ***	-0.032		0.161	***	0.035		-0.113	**	0.045	
S _{mass} Clonality	0.018 0.059	0.094 ** 0.125 **	-0.123 -0.057	***	0.094 0.136	***	0.015 0.068		$0.05 \\ -0.021$		-0.054 0.066	

^{***,} $P \le 0.001$; **, 0.001 < P < 0.01. The environmental variable abbreviations are shown in Table 2 and the plant trait abbreviations in Table 3.

Perspectivas frente al cambio global

- Actualmente en Sistema Central las especies orófilas ya ocupan las situaciones más expuestas y frías en las cimas estudiadas, por lo que la capacidad de las cimas más elevadas para albergar nuevos microclimas ante un cambio de las condiciones climáticas puede ser limitada.
- Por sus estrategias funcionales es esperable que aquellas especies potencialmente más vulnerables al calentamiento global sean las especies de morfología almohadilladas (caméfitos pulviniformes) y otras especies leñosas con hojas pequeñas, que actualmente ocupan los lugares más fríos. Su lento crecimiento, falta de reproducción vegetativa y su preferencia por suelos poco desarrollados y pobres en nutrientes hace que estas especies sean también especialmente vulnerables a las perturbaciones por herbívoros.

Variaciones altitudinales de los parámetros microbianos en los pastos y piornales

Ecología de la comunidad microbiana del suelo

Efectos de la vegetación. Diferencias microclimáticas entre pastizales y piornales

	Vegeta	tion	Altitu	de	Mean (SE)		
Temperature (ºC)	F	р	F	Р	Grassland	Shrubland	
Mean annual temperature	4.379	*	1.9	ns	6.51 (0.19)	5.55 (0.26)	
Mean temperature of the coldest month	13.63	***	2.71	ns	-0.58 (0.12)	0.38 (0.16)	
Mean temperature of the warmest month	33.12	***	5.41	*	18.39 (0.27)	17.26 (0.54)	

Conclusiones

- El contenido en las diferentes formas de C orgánico del suelo consideradas y la mineralización de la materia orgánica del suelo disminuye con el incremento altitudinal.
- Durante el verano la sensibilidad a la temperatura de la descomposición de la materia orgánica es mayor en aquellos suelos más fríos. Una menor temperatura del suelo puede estar condicionada por el incremento altitudinal o por la presencia de un dosel arbustivo que sombrea el suelo durante el verano.
- Los piornales de *Cytisus oromediterraneus* determinan cambios en las condiciones microclimáticas del suelo, una mayor sensibilidad a la temperatura de la descomposición de la materia orgánica, mayores contenidos de las diferentes formas de C orgánico medidas (i.e. SOC, DOC, C microbiano) y una menor disponibilidad de C fácilmente asimilable para la actividad microbiana que en los suelos de pasto de *Festuca curvifolia*.
- •Efecto mitigador de las emisiones de CO₂ debido a la matorralización de pastos de alta montaña es incierto.